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State spaces in which not any two states may be connected by a reversible process are 
possible in models of cor~tinuous media with complicated properties. States form 
which it is generally not possible (within limits of certain models) to return to the init- 
ial state, i, e. to realize a cyclic process, are also posstble. Some hardening plas- 
tic materials whose load bearing surface cannot generally return to its initial shape and 
position provide examples of models in which parameters of state that define ihe load 
bearing surface cannot return to their initial values. Another example is provided by 
models of hereditary media whose state is determined by the whole history of thestrain 
tensor. 

When any two states can be connected by a process (which shows the feasibility of 
closed processes) the macroscopic formulation of the Second Law of thermodynamics 
for processes ~volv~g homogen~ materials is of the form [l] 

S -p&g0 (1) 

and in the case of nonhomogeneous materials it is of the form 

12) 

where integration with respect to time t is carried out dnring the course of anyproc- 
ess that begins and ends in the same state; p is the rate of heat flow to a body, q’ 
is the density of the bulk heat intake rate, q is the heat flux vector, T is the absol- 
ute temperature, p is the body density, and T’ denotes the region occupied by the 
body. If any two states can be linked by reversible processes, such processes can be 
used for defining entropy and for proving that formula (1) is equivalent to the statem- 
ent [l]; there exists a function of state 5 (called entropy) such that in any process 

dS = d,S + t&S, d,S = dQ”,T, d$ > 0 

The respective reasoning is not directly applicable in the absence of reversible 
processes, and in the case when not any two states can be linked by a process it is 
necessary to alter formulations (1) and (2) themselves, 

First of all we replace (1) ,and (2) by a formulation that is equivalent to them on 
the usual assumptions about realizable processes, but without mentioning cyclic proc- 
esses. 

For brevity we denote the process that begins at instant $1 in state A and finish- 
es at instant ts in state B by rr_4B and a cyclic process by rru. We denote by 
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J (ZCAB) the quantity 

t2 

s SC f-it P 
h v 

-$-div-$-)dV 

where all quantities relate to process 7c.A~ . Process K4c which consists of caray- 
ing out consecutively P~OC~SP~S TCAB and J~BC is denoted by EABZBC. 

In this notation formulas (1) and (2) aaarme for any ~_JA the form 

J (BAA) < 0 

If any two states can be linked by a procm, formula (3) is equivalent to the cond- 
ition: for any two states A and B 

(the upper bound is taken over all procea8es rr,AB ). 
Indeed, since (3) implies that 

J (~~AB&A) = J @CAB)+ J (&A)<O 
hence for fixed &A we have (4). Conversely (3) followa from (4), since in the pres- 
ence of process ,&A with J (II;,) = a > 0 we would have 

SUP J @AA) = + 00 
SAA 

(it is sufficient to consider a multiple repetition of process nk~ 1. 

The quantitative macroscopic formulation by (4) of the Second Law of thermodyna- 
mics is also appiicable to models within whOse limitr not any two states can be linked 
by a process. The fulfilment of inequaliQ (4) may be considered as the necessary 
condition for the po5sibility of extending this model to pr0ce8au linking any two statea, 
and to have the &card Law of thermodynamfrr in comrcalioaal formulaUon (I) and 
(2). Such extension of the model should always be poeaible; for exampk in the case 
of models of solid bodies that are plasttcally defOrmable or bodies that have hereditary 
propexties it is sufficient to take fusion inta comklcration. 

Below we apply the relaxed assumption about realizable proctget: the-m exists 
in the space of states a space * such that procu, rc*p ts realizable for any state P* 

Condition (4) is then equivalent to the statement: there exists an entropy, a furmUon 
of state s , such that for any process %IB 

s (8) - s (44) > J (n.4B) (5) 

Formula (4) obviously foUow8 from (5). COnVerSeiy, if we set 

S (P) = S, (P) = sup J(n*p) 
=*p 

th%?llfOrthe PKOCW =*B = fi*AaAB 

S,(B)> Jhd = J &*A) + J (SAB) 
for any rck4 . Hence (5) is satisfied. 

Expressions other than S, are generally also possible for entropy s. 
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An ex ample of arbitrariness of entropy select- 
i o n. Let for a thermoelastic-plastic body the density of internal energy U andstress- 
es P” be defined, as in the cortespondiug elastic model, by the elastic strain sije 
and temperature T 

u = Ue (sije, T), pi’ = peij (Ebb’, T) 

with the body load carrying surface defined by the Mises equation 

f = 1j2 pfijpijt - h-’ (T, X) = 0 (Pij’ == pij - ‘13 p,rg,j) 

and let the determining relations for plastic strains eij* and for the parameter x 
of hardening be of the form 

while in the opposite case 

On the usual assumptions about q and that the bulk density of entropy s depends 
on the parameters of state slje, T, and x inequality (5) for entropy 

Ts’ > -!$ - $ div $- 

is equivalent to conditions 

au 1 (6) 

To satisfy (6) it is sufficient to take for s the entropy density of the correspond- 
ing elastic model s = s, (eije, T). In addition it is also possible to use any function 

S=se(eij'vV+~l(Xh dX / 
ds,>O 

In fact conditions (6) are, as previously, satisfied (the last of these in satisfied 
owing to the inequality pi&f’*),0 which follows from the determining relations). 

This example shows that for models with complicated properties the entropy can 
be defined with considerable arbitrariness, and not only to the additive constant. 

For the uniqueness of entropy (accurate to the additive constant) it is sufficient 
that for any state P the sequencies of processes {s&J} and {nB} such that 

lim J (I$$ + lim J (J@) = 0 
n-boa n-rm 

be realizable, since then by virtue of (5) 
lim J (J@) < S(P) - S (*) < - lim J (rcyi) = lim J (nr&) 
n-rm n-v52 n-m 
S(P) = S(*) + lim J(&?) 

n+Dj 

(7) 
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where the limft is independent of the s&ctkn of sequence af (&} in (7). 
Condition (7) is sati&& in many mod&Is of continuous media by sequenciea obtain- 

ed by slowing down some proetstes zap and n+, which are usually replacbd by 
Tnfinstely siow reversfble processes” * 

The c?atsfdered here scheme for the def&ition of entropy is applicable also in the 
case of some other assumptions about realizable procssrea, For instance, it is possible 
on the assumption of feasibility of proceases np* (but not 31;*p) to set 

It is also possible to consider isstead of n*p processes that are in somt s-ease 
approximations of the state P. In particular. the entropy for media with fadiag mem- 
ory [Z] may be determined Fn this manner without using the assumption about the be- 
havior of medium in a slowed dowa procw, 

Thfs paper is pasay based WI the repat presented by the autbms at the 441 All- 
Union Congress on Tkoretkal and AppWi ldechtia. 
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